The coffee-roasting process follows coffee processing and precedes coffee brewing. It consists essentially of sorting, roasting, cooling, and packaging but can also include grinding in larger-scale roasting houses. In larger operations, bags of green coffee beans are hand- or machine-opened, dumped into a hopper, and screened to remove debris. The green beans are then weighed and transferred by belt or pneumatic conveyor to storage hoppers. From the storage hoppers, the green beans are conveyed to the roaster. Initially, the process is endothermic (absorbing heat), but at around 175 °C (347 °F) it becomesexothermic (giving off heat).
For the roaster, this means that the beans are heating themselves and an adjustment of the roaster's heat source might be required. At the end of the roasting cycle, the roasted beans are dumped from the roasting chamber and cooled with uncompressed forced air.
In Vietnam coffee is often coated with oil (traditionally clarified butter) and a small amount of sugar prior to roasting to produce a "butter roast". The roasting process results in an additional caramelized coating on the beans.
The most common roasting machines are of two basic types: drum and hot-air, although there are others including packed-bed, tangential and centrifugal roasters. Roasters can operate in either batch or continuous modes. Home roasters are also available.
Drum machines consist of horizontal rotating drums that tumble the green coffee beans in a heated environment. The heat source can be supplied by natural gas,liquefied petroleum gas (LPG), electricity, or even wood. The most common employ indirectly heated drums where the heat source is under the drum. Direct-fired roasters are roasters in which a flame contacts the beans inside the drum; very few of these machines are still in operation.
Hot-air roasters force heated air through a screen or perforated plate under the coffee beans with sufficient force to lift the beans. Heat is transferred to the beans as they tumble and circulate within this fluidized bed.
The most popular, but probably the least accurate, method of determining the degree of roast is to judge the bean's color by eye (the exception to this is using a spectrophotometer to measure the ground coffee reflectance under infrared light and comparing it to standards such as the Agtron scale). As the coffee absorbs heat, the color shifts to yellow and then to increasingly darker shades of brown. During the later stages of roasting, oils appear on the surface of the bean. The roast will continue to darken until it is removed from the heat source. Coffee also darkens as it ages, making color alone a poor roast determinant. Most roasters use a combination of temperature, smell, color, and sound to monitor the roasting process.
Sound is a good indicator of temperature during roasting. There are two temperature thresholds called "cracks" that roasters listen for.
At approximately 196 °C (385 °F), the coffee will emit a cracking sound. This point is referred to as "first crack," marking the beginnings of a "light roast".
At first crack, a large amount of the coffee's moisture has been evaporated and the beans will increase in size.
When the coffee reaches approximately 224 °C (435 °F), it emits a "second crack", this sound represents the structure of the coffee starting to collapse. If the roast is allowed to progress further, the coffee will soon fully carbonize, and eventually combust.
These images depict samples taken from the same batch of a typical Brazilian green coffee at various bean temperatures with their subjective roast names and descriptions.
At lighter roasts, the coffee will exhibit more of its "origin character"—the flavors created by its variety, processing, altitude, soil content, and weather conditions in the location where it was grown.
As the beans darken to a deep brown, the origin flavors of the bean are eclipsed by the flavors created by the roasting process itself. At darker roasts, the "roast flavor" is so dominant that it can be difficult to distinguish the origin of the beans used in the roast.
Below, roast levels and their respective flavors are described. These are qualitative descriptions, and thus subjective.
Common Roast Names | Notes | Surface | Flavor | |
---|---|---|---|---|
Light | Cinnamon, American, Half City, Moderate-light Roast. | After several minutes the beans “pop” or "crack" and visibly expand in size. This stage is called first crack. | Dry | Lighter-bodied, higher acidity, no obvious roast flavor. This level of roast is ideal for tasting the full origin character of the coffee. |
Medium | City, City+, Full City | After being developed through first crack, the coffee reaches these roast levels. | Dry | Sugars have been further caramelized, and acidity has been muted. This results in coffee with higher body, but some roast flavor imposed. |
Dark | Full City+, Italian, Viennese, French | After a few more minutes the beans begin popping again, and oils rise to the surface. This is called second crack. | Shiny. The level of oil correlates to how far the coffee is taken past second crack. | Bittersweet flavors are prominent, aromas and flavors of roast become clearly evident. Little, if any, origin character remains. |
Caffeine content varies by roast level. Caffeine diminishes with increased roasting level: light roast, 1.37%; medium roast, 1.31%; and dark roast, 1.31%. However, this does not remain constant in coffee brewed from different grinds and brewing methods. Because the density of coffee changes as it is roasted, different roast levels will contain respectively different caffeine levels when measured by volume or mass, though the bean will still have the same caffeine.
Home roasting is the process of roasting small batches of green coffee beans for personal consumption. Even after the turn of the 20th century, it was more common for at-home coffee drinkers to roast their coffee in their residence than it was to buy pre-roasted coffee. Later, home roasting faded in popularity with the rise of the commercial coffee roasting companies. In recent years home roasting of coffee has seen a revival.
In some cases there is an economic advantage, but primarily it is a means to achieve finer control over the quality and characteristics of the finished product.
Extending the shelf life of roasted coffee relies on maintaining an optimum environment to protect it from exposure to heat, oxygen, and light. Roasted coffee has an optimal typical shelf life of two weeks, and ground coffee about 15 minutes. Without some sort of preservation method, coffee becomes stale.
The first large-scale preservation technique was vacuum packing in cans. However, because coffee emits CO2 after roasting, coffee to be vacuum-packed must be allowed to de-gas for several days before it is sealed. To allow more immediate packaging, pressurized canisters or foil-lined bags with pressure-relief valves can be used. Refrigeration and freezing retards the staling process. Roasted whole beans can be considered fresh for up to one month if kept cool. Once coffee is ground it is best used immediately.
Particulate matter (PM), volatile organic compounds (VOC), organic acids, and combustion products are the principal emissions from coffee processing. Several operations are sources of PM emissions, including the cleaning and destoning equipment, roaster, cooler, and instant coffee drying equipment. The roaster is the main source of gaseous pollutants, including alcohols, aldehydes, organic acids, and nitrogen and sulfur compounds. Because roasters are typically natural gas-fired, carbon monoxide (CO) and carbon dioxide (CO2) emissions result from fuel combustion. Decaffeination and instant coffee extraction and drying operations may also be sources of small amounts of VOC. Emissions from the grinding and packaging operations typically are not vented to the atmosphere.
Particulate matter emissions from the roasting and cooling operations are typically ducted to cyclones before being emitted to the atmosphere. Gaseous emissions from roasting operations are typically ducted to a thermal oxidiser or thermal catalytic oxidiser following PM removal by a cyclone. Some facilities use the burners that heat the roaster as thermal oxidisers. However, separate thermal oxidisers are more efficient because the desired operating temperature is typically between 650–816 °C (1,202–1,501 °F), which is 93–260 °C (199–500 °F) more than the maximum temperature of most roasters.
Some facilities use thermal catalytic oxidizers, which require lower operating temperatures to achieve control efficiencies that are equivalent to standard thermal oxidisers. Catalysts are also used to improve the control efficiency of systems in which the roaster exhaust is ducted to the burners that heat the roaster. Emissions from spray dryers are typically controlled by a cyclone followed by a wet scrubber.
Nguồn tin: en.wikipedia.org/vietnamcoffee.asia
Ý kiến bạn đọc
Những tin mới hơn
Những tin cũ hơn